
CS103 Handout 44

Winter 2018 March 9, 2018

Practice Final Exam 2

We strongly recommend that you work through this exam under realistic conditions rather than
just fiiiing through the iroblems and seeing what they look like. Setting aside three hours in a
quiet siace with your notes and making a good honest efort to solve all the iroblems is one of
the single best things you can do to ireiare for this exam. It will give you iractice working un-
der time iressure and give you an honest sense of where you stand and what you need to get
some more iractice with.

This practice fnal exam is a (slightly modifedd ersion of the fnal exam we ga e out in Fall 2016.
The exam policies are the same for the midterms – closed-book, closed-computer, limited note
(one double-sided sheet of 8.5” × 11” paper decorated howe er you'd liked.

You ha e three hours to complete this exam. There are 50 total points.

Question Points Graders

(1d Set Theory and Logic / 8

(2d Graphs and Natural Numbers / 6

(3d Binary Relations and Induction / 10

(4d Regular and Context-Free Languages / 13

(5d R and RE Languages / 10

(6d P and NP Languages / 3

/ 50

2 / 14

Problem One: Set Theory and Logic (8
Points)
An indeiendence system o er a set A is a nonempty set I ⊆ ℘(Ad with the following property:

∀S ∈ I. ℘(Sd ⊆ I.

This question explores some properties of independence systems.

i. (3 Points) Pro e that if I is an independence system o er a set A, then Ø ∈ I.

3 / 14

As a refresher from part (id of this problem, an indeiendence system o er a set A is a nonempty
set I ⊆ ℘(Ad with the following property:

∀S ∈ I. ℘(Sd ⊆ I.

ii. (5 Points) Let I₁ and I₂ be independence systems o er the same set A. Pro e that I₁ ∩ I₂ is
also an independence system o er A.

For simplicity, you can use the fact that I₁ ∩ I₂ ⊆ ℘(Ad without proof. Howe er, since we
ha en't talked much about properties of set intersection in this course, if you want to use
any other facts about set intersection, you'll need to pro e them frst.

4 / 14

Problem Two: Graphs and Natural Numbers (6 Points)
On Problem Set Four, you explored bipartite graphs. As a refresher, a graph G = (V, Ed is bipar-
tite if there are sets V₁ and V₂ where all three of the following are true:

• V₁ and V₂ ha e no nodes in common (that is, V₁ ∩ V₂ = Ød.

• E ery node v ∈ V belongs to at least one V₁ and V₂.

• E ery edge in E has one endpoint in V₁ and the other endpoint in V₂.

Now, consider the graph Gℕ defned as follows: the nodes in Gℕ are the natural numbers, and
there's an edge between a pair of nodes u and v if and only if u + v is odd. This graph contains in-
fnitely many nodes, which is unusual but nothing to worry about.

Pro e that Gℕ is bipartite.

5 / 14

Problem Three: Induction and Binary Relations (10 Points)
Gi en a binary relation R o er a set A and a natural number n ≥ 1, we can defne a new binary re-
lation o er A called the nth iower of R, denoted Rn. This relation is defned inducti ely as fol-
lows:

xR1y if xRy

xRn+1y if ∃z ∈ A. (xRz ∧ zRnyd.

(Note that Rn is only defned for n ≥ 1, and remember that “if” here means “is defned as.”d

i. (7 Points) Let R be an arbitrary binary relation o er a set A. Your task is to pro e the fol-
lowing statement:

For any natural numbers m, n ≥ 1,
and for any a, b, c ∈ A,

if aRnb and bRmc, then aRn+mc.

To do so, we'd like you to use induction. Specifcally, use induction to pro e that the state-
ment P(nd defned below is true for all natural numbers n ≥ 1:

P(nd is the statement “for any natural number m ≥ 1,
and for any a, b, c ∈ A,

if aRnb and bRmc, then aRn+mc.”

6 / 14

(Extra space for your answer to Problem Three, part (i), if you need it.)

7 / 14

The transitive closure of a binary relation R o er a set A, denoted R+, is a binary relation o er A
defned as follows:

xR+y if ∃n ∈ ℕ. (n ≥ 1 ∧ xRnyd.

ii. (3 Points) Let R be an arbitrary binary relation o er a set A. Using your result from part
(id of this problem, pro e that R+ is transiti e. (You can use the result from part (id e en if
you weren't able to pro e it.d

8 / 14

Problem Four: Regular and Context-Free Languages (13 Points)
Consider the following language:

L₁ = { w ∈ {a, b, c}* | the last character of w appears nowhere else in w, and |w| ≥ 1 }.

This is a ariant on one of the languages you built an NFA for in Problem Set Six. Here are some
sample strings in L₁:

• a

• b

• c

• aaaaac

• aabbaabbc

• ccbbccbba

• bac

• cbba

Since this language is regular, it's possible to build a regular expression for it.

i. (2 Points) Write a regular expression for L₁. (Hint: You probably don't have time to work
through the state elimination algorithm on this exam. Try designing the regular expression
from scratch.)

9 / 14

In many programming languages (C, C++, Python, Ja a, Ja aScript, etc.d, a string literal is a
piece of text enclosed in double quotes, such as "Hi everybody!" or "Good luck on the
exam!". Sometimes, you'll want to defne a string that contains a double-quote character. In these
languages, to do that, you escape the double-quote by preceding it with a backslash, like this:

"Quoth the raven \"Nevermore.\""

This lets the compiler distinguish between the double-quotes inside a string and the double-quotes
delimiting a string.

As a consequence of this rule, any time you want to write a backslash character, you need to es -
cape it as well by preceding it with a second backslash. For example, you might ha e a string like
this:

"The notation \"A \\ B\" denotes the difference of the sets A and B."

Let Σ = {z, ", \} and consider this language L₂:

L₂ = { w ∈ Σ* | w is a legal string literal }.

Here are some sample strings in L₂:

• ""

• "z"

• "\""

• "\\"

• "zz\"zz\\zz\"z"

• "\\\""

• "\"zz\""

• "\"\""

Here are some sample strings not in L₂:

• "z (this string isn't closed)

• """ (the quote in the middle needs to be escaped)

• "\" (this string is unterminated – that fnal double quote is escaped)

• \"zz" (the string doesn't begin with a double quote)

• "\z" (you cannot escape the letter z with a slash)

• "\\\z" (you cannot escape the letter z with a slash)

This language happens to be regular, which is useful because many compilers use some form of
fnite automaton to fnd strings in source code.

ii. (3 Points) Design an NFA for L₂.

10 / 14

Let Σ = { 1, ≥ } and consider the following language L₃:

L₃ = { 1m≥1n | m, n ∈ ℕ and m ≥ n }

iii. (4 Points) Pro e that L₃ is not a regular language.

11 / 14

Let Σ = {a, b} and consider the following language:

L₄ = { w ∈ Σ* | |w| ≡4 0, and the frst quarter of the characters in w contains at least one b }.

For example, baaa ∈ L₄, bbbb ∈ L₄, abbbbbba ∈ L₄, bbbaaabbbaaa ∈ L₄, ababbbbbbbbb ∈ L₄, but
abbb ∉ L₄, ε ∉ L₄, b ∉ L₄, aabbbbaa ∉ L₄, and aaabbbbbbbbb ∉ L₄. (For simplicity, I' e under-
lined the frst quarter of the characters in each stringd.

i . (4 Points) Write a CFG for L₄.

12 / 14

Problem Five: R and RE Languages (10 Points)
Stanford's email system often tags messages with attachments as possible iruses by changing the
subject to say something like [POSSIBLE VIRUS: ###]. You might wonder why the email system
says something is a “possible” irus rather than just intercepting emails that really do contain
 iruses and blocking them from getting to their recipients. This question explores why.

Let's imagine that there's some method that, if called, will do something nefarious to your com-
puter. Imagine it's this method:

private void doSomethingNefarious()

Your job is to pro e that it's impossible to write a method

private boolean canDoSomethingNefarious(String program)

that takes as input the source code of a program, then returns true if the program under some cir-
cumstance can call the doSomethingNefarious method and returns false otherwise. (This par-
tially explains why you get the “possible” irus warning o er email – there's no general way to test
whether a program can do nefarious things!d

i. (4 Points) In the interests of time, we don't want you to write out a full formal proof of
this result. Instead, do the following:

• In the space below, write a self-referential program P that uses the canDoSomethingNe-
farious method such that P does something nefarious if and only if it doesn't do some-
thing nefarious. You can assume you ha e access to a method mySource() that returns the
source code of your program.

• Briefly explain why P does something nefarious if and only if it doesn't do something ne-
farious, addressing each direction of the implication.

13 / 14

iii. (6 Points) Below is a Venn diagram showing the o erlap of diferent classes of languages
we' e studied so far. We ha e also pro ided you a list of numbered languages. For each of
those languages, draw where in the Venn diagram that language belongs. As an example,
we' e indicated where Language 1 and Language 2 should go. No proofs or justifcations
are necessary, and there is no penalty for an incorrect guess.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { 1m+1n=1m+n | m, n ∈ ℕ and m and n are e en }

4. { 1m+1n=1m+n | m, n ∈ ℕ and m ≤ 10137 }

5. { 1m+1n=1m+n | m, n ∈ ℕ and m + n ≤ 10137 }

6. { ⟨M, w⟩ | M is a TM, w is a string, and M accepts w within |w|137 steps }

7. { ⟨M⟩ | M is a TM and M halts on infnitely many inputs }

8. { ⟨M, w⟩ | M is a TM, w is a string, M accepts at least one substring of w }

14 / 14

Problem Six: P and NP Languages (3 Points)
We briefly co ered the P and NP languages in our last week of class. Here's a quick series of
true/false questions about them. Each correct answer is worth one point, and there is no penalty
for an incorrect guess. You do not need to justify your answers.

i. NP stands for “not polynomial time” and is the class of decision problems that cannot be
sol ed in polynomial time.

☐ True ☐ False

ii. All NP-hard problems are in NP.

☐ True ☐ False

iii. If the halting problem is decidable, then P ≠ NP.

☐ True ☐ False

We ha e one fnal question for you: do you think P = NP? Let us know in the space below. There
are no right or wrong answers to this question – we're honestly curious to hear your opinion!

☐ I think P = NP ☐ I think P ≠ NP

